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Introduction
ree

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2024-10-17∗

Current Edition: 2024-10-17

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MAH4J3 Review of Commutative Algebra

1 Review of Commutative Algebra

A ring (R,+ , · ,0R,1R), consists of a set R, two binary operations +,· : R×R→ R, and two distinguished
elements 0R,1R ∈ R such that (R,+) is an abelian group with identity 0R; (R, ·) is a monoid with identity
1R; and multiplication distributes over addition.

All the rings we will consider will be commutative, unital, and non-trivial.

A function f : R→ S between rings R and S is a ring homomorphism if for all a,b ∈ R,

(i) f(a+ b) = f(a) + f(b);

(ii) f(ab) = f(a)f(b);

(iii) f(1R) = 1S .

An ideal I of a ring R is an additive subgroup that absorbs multiplication from the left (or equivalently
for commutative rings, the right, or both sides), and we write I ⊴ R to denote this relation.

Example. The set I of polynomials with zero constant term is an ideal of R = C[x,y]. Adding such poly-
nomials has group structure since the coefficients all have additive inverses, and addition of polynomials
is associative, commutative, and closed on I. Multiplying any polynomial in R by a polynomial in I
yields another polynomial with zero constant term, so I also absorbs multiplication. △

Every element x ∈ R generates an ideal ⟨x⟩ = xR = {xr : r ∈ R}. An ideal of this form is called a
principal ideal.

The unit ideal is the entire ring R = ⟨1R⟩, and the zero or trivial ideal is the set {0R} = ⟨0R⟩. An ideal
is proper if it is a proper subset of the ring; that is, it is not equal to the whole ring.

The intersection of arbitrary ideals is also an ideal, so we may define an ideal generated by a set S ⊆ R
by

⟨S⟩ =
⋂

S⊆I⊆R
I is an ideal

I

That is, the ideal ⟨S⟩ is then the smallest ideal containing S. We can also think of the ideal ⟨S⟩ as the
collection of all finite R-linear combinations of elements of S.

An ideal I is finitely generated if there is a finite set S such that I = ⟨S⟩ = ⟨s1, . . . ,sn⟩.

Example. The elements of the ideal I ⊴ C[x,y] of polynomials with zero constant term are of the form
xp(x,y) + yq(x,y), where p,q ∈ C[x,y]. That is, every element is the C[x,y]-linear combination of x and
y, so I = ⟨x,y⟩. △

The preimage of an ideal under a ring homomorphism ϕ is an ideal. In particular, the kernel ker(ϕ) =
ϕ−1

[
{0}
]

is an ideal.

1.1 Special Elements, Rings, and Ideals
Let R be a commutative ring.

(i) An element x ∈ R is a unit if xy = 1 for some y ∈ R – in this case, y is uniquely determined by x
and is also denoted by x−1;

(ii) An element x ∈ R is a zero-divisor if xy = 0 for some y ̸= 0;

(iii) An element x ∈ R is nilpotent if xn = 0 for some n ≥ 1. (This also implies that x is zero-divisor,
unless R is trivial.)

(i) R is a field if R is non-trivial and every non-zero element is a unit. In a field, the only ideals are
the zero ideal and the unit ideal;
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MAH4J3 Affine Subvarieties

(ii) R is an integral domain if R is non-trivial and has no zero-divisors;

(iii) R is reduced if zero is the only nilpotent element.

(i) An ideal m ⊂ R is maximal if the only ideal strictly containing it is the unit ideal R;

(ii) An ideal p ⊂ R is prime if whenever fg ∈ p, we have f ∈ p or g ∈ p;

(iii) An ideal I ⊂ R is radical if whenever xn ∈ I, x ∈ I.

The radical of an ideal I is the ideal
√
I := {x ∈ R : ∃n > 0, xn ∈ I}

Equivalently, I is radical if I =
√
I.

Lemma 1.1. Every maximal ideal is prime, and every prime ideal is radical.

Theorem 1.2. An ideal I ⊴ R is

(i) maximal;

(ii) prime;

(iii) radical,

if and only if R/I is, respectively,

(i) a field;

(ii) a integral domain;

(iii) a reduced ring.

Given I ⊴ R, the quotient R/I is the set of cosets x+I = {x+i : i ∈ I}. This quotient has ring structure
under the addition and multiplication defined by (x+I)+(y+I) = (x+y)+I (i.e. the inherited quotient
group addition) and (x + I)(y + I) = xy + I. The quotient map π : R → R/I : x 7→ x + I is then a
surjective ring homomorphism with kernel I.

Because the quotient map π is a homomorphism, the preimage π−1[J ] of any ideal J ⊆ R/I is an ideal
of R containing I. Conversely, π maps every ideal K ⊆ R containing I onto an ideal in the quotient
ring. Therefore, the ideals of R/I are in bijection with the ideals of R containing I:

{ideals of R/I} ∼= {ideals of R containing I}

This bijection carries maximal, prime, and radical ideals to maximal, prime, and radical ideals, respec-
tively.

Theorem (First Isomorphism Theorem). Let ϕ : R → S be a homomorphism with kernel I. Then,
R/I ∼= im(ϕ). More precisely, the isomorphism ϕ̄ : R/I → im(ϕ) is given by ϕ̄(x + I) = ϕ(x) for all
x ∈ R.

2 Affine Subvarieties

Let k be any field. Later, we will often assume that k = C since we will want to work over an algebraically
closed field, but for now, we could also have k = R,Q,Z/pZ, etc. (In particular, the case where k is finite
or p-adic field is of utility in number theory.)

The set kn =
{
(x1,x2, . . . ,xn) : xi ∈ k

}
is called affine n-space (over k), also denoted Ank , or even

just An if the field is clear or unimportant. We also sometimes write things like A2
x,y to indicate the

indeterminates.
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MAH4J3 Affine Subvarieties

Note that Ank is just kn as a set ; it is customary to use different notation since kn is also a vector space
over k, a ring, a topological space with the standard Euclidean topology, etc. We will write Ank whenever
we wish to ignore this additional structure, or use an alternative (i.e. we will soon put a topology on Ank
distinct from the standard topology on kn).

Example.

k = R

k = C

A1
R = R1 A2

R = R2 A3
R = R3

A1
C = C

△

We can’t draw A4
R or A2

C convincingly as they are 4-dimensional over R, so we stop there. Later, we will
define a notion of dimension specific to algebraic geometry where An is n-dimensional. Thus, we will
suggestively choose to draw Ank as:

A1
k A2

k A3
k

even if k = C. In light of this, the set A1
C = C1 is then called the complex line, while A2

C = C2 is called
the complex plane. (Contrast with analytic contexts, where “complex plane” often refers to C1, while the
term “complex coordinate plane” is used for C2.)

Let p ∈ k[x1, . . . ,xn] be a polynomial. Then, the vanishing locus or zero locus of p is the set of points
upon which p vanishes:

V(p) := {x ∈ An : p(x) = 0}

Example. Consider the polynomial y − x2 ∈ C[x,y]. Then, the vanishing locus is the set:

V(y − x2) =
{
(x,y) ∈ C2 : y = x2

}

x

y

Note that this picture really depicts V(y − x2) ∩ R2. △
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MAH4J3 Affine Subvarieties

When drawing a sketch of a vanishing locus V in Cn, we will only draw its real points V ∩ Rn.

More generally, the vanishing locus of a set S = {fi}i∈I ⊆ k[x1, . . . ,xn] of polynomials is the set of points
upon which all the polynomials in S vanish:

V(S) := {x ∈ An : ∀p ∈ S,p(x) = 0}

If S = {f1, . . . ,fk} is finite, then we also write V(S) = V
(
{f1, . . . ,fk}

)
as V(f1, . . . ,fk).

Example. V(x,y) ⊆ C3 is the complex line in C3 consisting of the z-axis. △

Theorem 2.1.

(i) For any S1,S2 ⊆ k[x1, . . . ,xn],
V
(
S1

)
∪ V

(
S2

)
= V

(
S1S2

)
where S1S2 = {fg : f ∈ S1,g ∈ S2}

(ii) If I is any set indexing a collection of sets Si ⊆ k[x1, . . . ,xn] of polynomials, then

⋂
i∈I

V(Si) = V

(⋃
i∈I

Si

)

Proof.

(i) If x ∈ V(S1) ∪ V(S2), then f(x) = 0 for all f ∈ S1, or g(x) = 0 for all g ∈ S2. In either case,
(fg)(x) = f(x)g(x) = 0 for all f ∈ S1 and g ∈ S2, so x ∈ V(S1S2).

For the reverse containment, suppose that x /∈ V(S1) ∪ V(S2), so there exist f ∈ S1 and g ∈ S2

such that f(x) ̸= 0 and g(x) ̸= 0. Then, (fg)(x) ̸= 0, so x /∈ V(S1S2), proving the claim by
contraposition.

(ii) We have x ∈
⋂
V(Si) if and only if x vanishes on every Si. But this holds if and only if x vanishes

on the union of the Si, i.e., x ∈ V
(⋃

i∈I Si
)
.

■

An affine algebraic set in Ank is the common vanishing locus of some collection {Fi}i∈I of polynomials
in k[x1, . . . ,xn]. Note that the indexing set I may not necessarily be finite or even countable.

If k is algebraically closed, then an affine algebraic set of Ank is an (affine) subvariety of Ank .

Example.

(i) The entire space kn = V(0) is itself an affine algebraic set.

(ii) The empty set ∅ = V(1) is an affine algebraic set.

(iii) Any point a = (a1, . . . ,an) ∈ An is an affine algebraic set since {a} = V(x1 − a1,x2 − a2, . . . ,xn −
an) = V

(
{xi − ai}ni=1

)
.

(iv) Any finite subset S ⊆ An is also an affine algebraic set:

S =
⋃
s∈S

{s} =
⋃
s∈S

V(xi − si) = V

(∏
s∈S

(xi − si)

)

△

In fact, for A1
k, these are the only affine algebraic sets possible:

Lemma 2.2. The affine algebraic sets of A1
k are precisely A1

k, ∅, and all finite subsets.
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MAH4J3 2.1 The Zariski Topology

Proof. If f is the zero polynomial, then V(f) = A1. Otherwise, f is some polynomial of degree d. Then,
f has at most d roots, so V(f) = {roots of f} has cardinality at most d and is, in particular, finite.
Then, for any collection {fi}i∈I ,

V
(
{fi}i∈I

)
=
⋂
i∈I

V(fi)

is the intersection of sets that are either all of A1, finite, or empty and is thus itself either all of A1,
finite, or empty.

The converse statement that A1, ∅, and every finite subset is an affine algebraic set is shown in the
previous example. ■

Example. Consider the set S1 =
{
cos(t)+ i sin(t) : t ∈ R

}
⊆ A1

C. This set is infinite, but is not all of A1
C,

and is thus not a subvariety of A1
C. △

A hypersurface is the vanishing locus V(f) of a single polynomial in An. If n = 2, then such a vanishing
locus is also called an affine plane curve.

Lemma 2.3. The countably infinite union of affine algebraic sets is not necessarily an affine algebraic
set.

Proof. Consider A1
C. For each integer a ∈ Z, the singleton {a} = V(x − a) is a subvariety, but the

countably infinite union
Z =

⋃
a∈Z

{a}

is infinite but not all of A1
C, and is thus not a subvariety. ■

2.1 The Zariski Topology
From now on, we assume that k is algebraically closed unless specified otherwise.

Recall that a topology on a set X is a set T ⊆ P(X) of open sets such that

(T1) X is open and ∅ is open;

(T2) The arbitrary union of open sets is open;

(T3) The finite intersection of open sets is open.

The complement of an open set is called closed.

For our purposes, it will be helpful to characterise topologies in terms of closed sets instead. By De
Morgan’s laws, a topology on X is equivalently a set T ′ ⊆ P(X) of closed sets such that

(T1) X is closed and ∅ is closed;

(T2) The arbitrary intersection of closed sets is closed;

(T3) The finite union of closed sets is closed.

Now, we have seen that An and ∅ are both subvarieties, and that the arbitrary intersection and finite
unions (by induction on binary unions) of subvarieties are subvarieties.

So, the collection of subvarieties of An defines a topology of closed sets on An called the Zariski topology.

Compared to the standard topology, non-empty Zariski-open sets are very “large”. While the standard
topology has a basis consisting of open balls of arbitrarily small radius, every non-empty Zariski-open
set is unbounded in the standard topology, and in fact dense in both the Zariski and standard topol-
ogy. Furthermore, any two non-empty Zariski-open subsets have non-empty intersection, so the Zariski
topology is strongly non-Hausdorff.
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MAH4J3 2.2 Regular Maps

Note that this definition is also satisfied by affine algebraic sets when k is not algebraically closed, but
we will generally be interested in the case of topologies of subvarieties.

Lemma 2.4. Any subset of Rn or Cn that is closed in the Zariski topology is also closed in the standard
topology.

Proof. Let S be closed in the Zariski topology, so S = V
(
{fi}i∈I

)
=
⋂
i∈I V(fi). Since polynomials are

continuous with respect to the standard topology and {0} is closed in the standard topology, V(fi) =
f−1i

[
{0}
]

is also closed, and hence the intersection S is also closed. ■

Recall that if X is a topological space and Y ⊆ X is a subset, then Y is naturally a topological space
under the subspace topology, where the open and closed sets of Y are the open and closed sets of X
intersected with Y .

In particular, if Y is a subvariety of An, then the Zariski-closed subsets of Y are subvarieties of An
intersected with Y . Since intersections of subvarieties are subvarieties, the closed subsets of a subvariety
Y are precisely the subvarieties of An that are contained in Y .

If Y is a subvariety of An, then a subvariety of Y is a Zariski-closed subset of Y , or equivalently, a
subvariety of An that is contained in Y .

Theorem 2.5. Subvarieties are compact in the Zariski topology.

2.2 Regular Maps
A map f : An → Am is regular or is a morphism of affine space if every component is a polynomial.
That is, there exist f1, . . . ,fm ∈ k[x1, . . . ,xn] such that

f(x1, . . . ,xn) =
(
f1(x1, . . . ,xn), . . . ,fm(x1, . . . ,xn)

)
Example. The projection map f : A2

x,y → A2
x,y defined by (x,y) 7→ x is a regular map, since the only

component x is a polynomial. △

Example. The map h : A1
t → A2

x,y defined by t 7→ (t2,t3) is a regular map, since the two components t2
and t3 are polynomials. △

This definition naturally extends to subvarieties. If V ⊆ An and W ⊆ An are subvarieties, then a map
of sets f : V →W is regular or is a morphism of subvarieties if it can be expressed as the restriction of
a regular map An → Am.

Note that the extension An → Am is not necessarily unique.

Example. Let V = V(y − x2) ⊆ A2 and W = A1. The map f : V → W defined by (x,y) 7→ x is a
morphism, since it is the restriction of the regular map A2

x,y → A1
t : (x,y) 7→ x.

It is also the restriction of the map (x,y) 7→ x+ y − x2, since y − x2 = 0 on V . △

Lemma 2.6. Let F : Anx1,...,xn
→ Amy1,...,ym be regular. Then, for any g ∈ k[y1, . . . ,ym],

(i) g ◦ F ∈ k[x1, . . . ,xn] is a polynomial;

(ii) F−1
[
V(g)

]
= V(g ◦ F );

(iii) F−1
[
V
(
{gi}i∈I

)]
= V

(
{gi ◦ F}i∈I

)
.

Proof.
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MAH4J3 2.2 Regular Maps

(i) Since F is regular, its components are polynomials F1, . . . ,Fm ∈ k[x1, . . . ,xn]. Then, the composi-
tion is defined by the substitution:

g ◦ F = g
(
F1(x1, . . . ,xn), . . . ,Fm(x1, . . . ,xn)

)
But a polynomial combination of polynomials is again a polynomial, so g ◦ F ∈ k[x1, . . . ,xn].

(ii) By definition, x ∈ F−1
[
V(g)

]
if and only if F (x) ∈ V(g) if and only if g

(
F (x)

)
, or equivalently,

x ∈ V(g ◦ F ).

(iii) Similar to the previous, x ∈ F−1
[
V
(
{gi}i∈I

)]
if and only if F (x) ∈ V

(
{gi}i∈I

)
if and only if

gi
(
F (x)

)
for all i ∈ I, or equivalently, x ∈ V

(
{gi ◦ F}i∈I

)
.

■

Corollary 2.6.1. The regular preimage of a subvariety of Am is a subvariety of An.

Lemma 2.7. Let X ⊆ An and Y ⊆ Am be subvarieties, and F : X → Y be regular. Then, for any
subvariety W ⊆ Y , F−1[W ] is also a subvariety of X.

Proof. Since W is a subvariety of Y , it is given by W = V
(
{fi}i∈I

)
. Let F : An → Am be a regular map

extending F : X → Y . Then,

F−1[W ] =
{
x ∈ X : F (x) ∈ V

(
{fi}i∈I

)}
=
{
x ∈ X : x ∈ V

(
{fi ◦ F}i∈I

)}
= X ∩ V

(
{fi ◦ F}i∈I

)
so F−1[W ] is a subvariety of X. ■

Note, however, that the regular direct image of a subvariety is not necessarily a subvariety. That is, a
regular map need not be a closed map.

Example. Let V = V(xy−1) be a subvariety of A2
x,y, and let f : A2

x,y → A1
t be the regular map (x,y) 7→ x.

Then, f(V ) = A1 \ {0}, which is not a subvariety.

x

y

f−→ t

△

A regular map V →W is furthermore an isomorphism (of subvarieties) if it has a regular inverse. Two
subvarieties are isomorphic if there exists an isomorphism between them, and we denote this relation as
usual by V ∼=W .

Example. Consider the subvarieties V = V(y − x2) ⊆ A2
x,y and W = A1

t . Then, the regular map f :
A2
x,y → A1

t : (x,y) 7→ x has inverse given by the restriction of the regular map g : A1
t → A2

x,y : t 7→ (t,t2).

△

Example. Consider the subvarieties V = V(y2−x3) ⊆ A2
x,y and W = A1

t . The regular map g : A1
t → A2

x,y

defined by t 7→ (t2,t3) is a bijection, and is moreover a homeomorphism in the Zariski topology, but is
not an isomorphism of subvarieties.
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MAH4J3 2.3 Irreducibilty

x

y

f
−→
←−
g

t

Since x = t2 and y = t3, the inverse is given by either
√
x, 3

√
y, or y

x ; none of which are polynomial. △

2.3 Irreducibilty
A topological space X is reducible if it is the union of two distinct closed proper subsets, and is irreducible
otherwise.

Example. The interval [0,1] is reducible in the standard topology, since [0,1] = [0, 12 ],[
1
2 ,1]. △

Example. Any one-point space is irreducible, since any proper subset is necessarily empty. △

By convention, the empty set is considered irreducible.

Lemma 2.8. A1
k is irreducible in the Zariski topology for any infinite field k.

Proof. Any proper closed subset of A1
k is either finite or empty, but A1

k is infinite, and thus cannot be
the union of two such subsets. ■

Theorem 2.9. Every subvariety V of An can be uniquely expressed as the union of finitely many irre-
ducible subvarieties.

The irreducible subvarieties in this decomposition are called the irreducible components of V .

Lemma 2.10. If V is a subvariety and W ⊆ V is an irreducible subvariety, then W is contained in one
of the irreducible components of V .

Proof. If V = V1 ∪V2 are proper closed subsets and W ⊆ V is closed, then W = (W ∩V1)∪ (V ∩V2) are
both closed. So W is irreducible only if it is contained entirely within V1 or V2. ■

If k is not algebraically closed, then qualitatively different polynomials can have the same vanishing loci.
For instance, over R as sets, V(x2 + y2) = V(x,y) =

{
(0,0)

}
⊆ A2

R, but we would really like to be able to
distinguish these as subvarieties.

The problem is that, over C, V(x2 + y2) ⊆ A2
C is reducible as V(x2 + y2) = V(x+ iy) ∪ V(x− iy). The

regular maps V(x2 + y2) → A1 defined by (x,y) 7→ 0 and (x,y) 7→ x agree as maps of sets over R, but
not over C. Even over R, we say that these two maps are distinct as morphisms.

The point is that, over an algebraically closed field, the set-theoretic picture faithfully captures the
algebro-geometric situation, while over R, it is not enough.

Lemma 2.11. The continuous image of an irreducible space is irreducible.

Proof. Let X is irreducible and f : X → Y is continuous and surjective. Suppose that Y = Y1 ∪ Y2
are both closed. Then, since f is continuous, X = f−1[Y1] ∪ F−1[Y2] are both closed. Since X is
irreducible, (at least) one of these must be equal to X, say f−1[Y1]. But then, by the surjectivity of f ,
Y = f(X) = Y1, and Y is irreducible. ■
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Theorem 2.12. Let X be a topological space, and V ⊆ X be a subspace. Then, V is irreducible if and
only if V is irreducible.

Let X be a topological space and V ⊆ X be a subspace. Recall that V is dense in X if V = X.

A map f : X → Y of topological spaces is dominant if f(X) is dense in Y .

Example. Consider the map f : A2 → A2 defined by (x,y) 7→ (xy,y). Then, f(A2) =
(
A2 \ {x-axis}

)
∪{

(0,0)
}
. This is neither open nor closed, but is dense in A2, so f is dominant. △

2.4 Dimension

Consider the subvariety of A3 defined by V(x2 + y2 + z2 − 1). It sees reasonable that the “dimension” of
this subvariety should be 2, since it can be thought of as a complex 2-sphere.

What about the subvariety V = V(xy,xz) = V(x) ∪ V(y,z) = {yz-plane} ∪ {x-axis} of A3? This variety
has two components: the yz-plane, which has dimension 2; and the x-axis which has dimension one. We
adopt the convention that the subvariety V should have dimension two.

The Krull dimension dim(V ) of a subvariety V ⊆ An is the length d of the longest possible chain
V0 ⊂ V1 ⊂ · · ·Vd−1 ⊂ Vd of non-empty irreducible subvarieties of V .

Example. A1 is 1-dimensional, since its only proper irreducible subvarieties of A1 are singletons, {pt} ⊆
{line}. △

Theorem 2.13. An is n-dimensional.

Note that if V0 ⊂ · · ·Vd is such a maximal chain, then necessarily dim(Vk) = k and V0 = {pt}. If V is
irreducible, then we also have Vd = V .

Lemma 2.14. The dimension of a subvariety of An is the maximum dimension of its irreducible com-
ponents.

Proof. Let V = V1 ∪ · · · ∪ Vn all be irreducible subvarieties with no containments between any of the
Vi. By Lemma 2.10, every irreducible subvariety of V lies in one of the Vi, so any chain of irreducible
subvarieties of V is also a chain in that Vi. So the dimension of V is at most that of the maximum
dimension of the Vi. Conversely, any chain in a Vi is also a chain in V , so the dimension of V is also at
least that of the maximum dimension of the Vi. ■

A subvariety is equidimensional if all of its irreducible components have the same dimension.

Example. The subvariety V(xy,xz) = V(x) ∪ V(y,z) is not equidimensional since V(x) is 2-dimensional,
while V(y,z) is 1-dimensional. △

Lemma 2.15. If W is a subvariety of V , then dim(W ) ≤ dim(V ).

Proof. Any chain in W is also a chain in V . ■

Lemma 2.16. If f : X → Y is a surjective regular map of subvarieties, then dim(X) ≥ dim(Y ).

That is, the dimension of the image is at most the dimension of the source: there are no space-filling
curves in algebraic geometry. In fact, we can weaken surjectivity to dominance, and the result still holds:

Theorem 2.17. If f : X → Y is a dominant regular map of subvarieties, then dim(X) ≥ dim(Y ).
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3 Algebraic Foundations

A C-algebra is a commutative ring that contains C as a subring.

Example. Any polynomial ring R = C[x1, . . . ,xn] over C is a C algebra since the subspace of contant
polynomials in R is isomorphic to C. △

Every C-algebra R is naturally a C-vector space, where the addition of vectors is defined by the addition
in R and the multiplication of a scalar in C by a vector in R is defined by the multiplication in R.

We can define concepts for C-algebras that are analogous to that of rings and ideals:

• The C-subalgebra generated by a subset S of a C-algebra R is the set

⟨S⟩ =
⋂

S⊆A⊆R
A is a C-algebra

A

That is, the C-algebra ⟨S⟩ is the smallest C-algebra containing S, or equivalently, the collection of
all finite polynomial combinations of elements of S with coefficients in R.

• A C-algebra is finitely generated if there is a finite set S such that A = ⟨S⟩.

For instance, the polynomial ring C[x,y] is finitely generated as a C-algebra by the elements x and
y.

• A ring homomorphism ϕ : R→ S between C-algebras R and S is a C-algebra homomorphism if it
is additionally C-linear.

Example. The complex conjugate map z 7→ z̄ is a ring homomorphism C → C, but is not a C-algebra
homomorphism since it is not C-linear. △

If R is a C-algebra and I ⊆ R is an ideal, then R/I is a C-algebra and the quotient map R → R/I is a
C-algebra homomorphism.

Theorem (Universal Property of Polynomial Rings). Suppose R is a C-algebra and a1, . . . ,an ∈ R.
Then, there exists a unique C-algebra homomorphism ϕ : C[x1, . . . ,xn] → R such that ϕ(xi) = ai.

Example. Let R = C[t], and pick t2,t3 ∈ C[t]. Then, there is a unique C-algebra homomorphism
ϕ : C[x,y] → C[t] such that ϕ(x) = t2 and ϕ(y) = t3. △

Lemma 3.1. Every finitely generated C-algebra R is the quotient of a polynomial ring.

Proof. Pick generators a1, . . . ,ak of R. Then, by the universal property of polynomial rings, there is a
unique C-algebra homomorphism ϕ : C[x1, . . . ,xk] → R with ϕ(xi) = ai.

Since the ai generate R, ϕ is surjective, so by the first isomorphism theorem,

R = imϕ ∼= C[x1, . . . ,xk]/ ker(ϕ)

■

3.1 Hilbert’s Basis Theorem
Although the definition of an affine subvariety allows for arbitrarily many polynomials in the vanishing
locus, it turns out that every affine subvariety can be expressed as the vanishing locus of only finitely
many polynomials. This follows from the Noetherian property of polynomials rings.

A ring is Noetherian if any of the following equivalent conditions hold:
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• Every strictly ascending chain of ideals

I0 ⊂ I1 ⊂ · · ·

is finite.

• Every weakly ascending chain of ideals stabilises. That is, for every chain of ideals

I0 ⊆ I1 ⊆ · · ·

there exists n > 0 such that
In = In+1 = In+2 = · · ·

• Every ideal is finitely generated.

Lemma 3.2. Every field is Noetherian.

Lemma 3.3. Let R be Noetherian and I ⊆ R be an ideal. Then, every generating set for I contains a
finite generating subset.

Theorem (Hilbert’s Basis Theorem). If R is Noetherian, then R[x] is Noetherian.

Corollary 3.3.1. If R is Noetherian, then R[x1, . . . ,xn] is Noetherian.

Corollary 3.3.2. C[x1, . . . ,xn] is Noetherian.

3.2 Hilbert’s Nullstellensatz
The set of polynomials that define a subvariety is not unique. Suppose that f and g vanish on a subvariety
V of An, and let h be any polynomial in k[x1, . . . ,xn]. Then, f+g and hf also vanish on X. In particular,
if V = V(S), then adding f + g and hf for any polynomial h to S does not change its zero locus. In
other words,

Thus, we always have V
(
⟨S⟩
)
= V(S), where ⟨S⟩ is the ideal of k[x1, . . . ,xn] generated by S (that is, the

set of all linear combinations of elements in S).

Let V be a subvariety of An. Then, the set I(V ) of polynomials that vanish on V is an ideal of k[x1, . . . ,xn]
called the vanishing ideal by the same reasoning as above.

I(V ) =
{
f ∈ k[x1, . . . ,xn] : ∀x ∈ V, f(x) = 0

}
Lemma 3.4. For any subvariety V of An, the vanishing ideal I(V ) is a radical ideal of k[x1, . . . ,xn].

Proof. Let f ∈ k[x1, . . . ,xn] be such that fn ∈ I(V ) for some n > 0, so fn(x) = 0 for all x ∈ V . Since
k is a field, it has no zero divisors, so fn(x) = f(x)n = 0 if and only if f(x) = 0 for all x ∈ V . So
f ∈ I(V ). ■

Theorem 3.5. Every subvariety V is the vanishing locus of finitely many polynomials.

Proof. Since V = V
(
I(V )

)
and k[x1, . . . ,xn] is Noetherian, I(V ) = ⟨f1, . . . ,fk⟩ is finitely generated, and

hence
V = V

(
I(V )

)
= V

(
⟨f1, . . . ,fk⟩

)
= V(f1, . . . ,fk)

■

Theorem 3.6. Every subvariety V of An is the intersection of finitely many hypersurfaces.
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Proof. V = V
(
{fi}i∈I

)
= V

(
⟨fi⟩i∈I

)
. By Noetherianness, this ideal is finitely generated, so V

(
⟨fi⟩i∈I

)
=

V
(
⟨f1, . . . ,fk⟩

)
=
⋂k
i=1 V

(
⟨fi⟩

)
is a finite intersection of hypersurfaces. ■

Theorem 3.7. For any subvariety V ,
V
(
I(V )

)
= V

Proof. By definition, V ⊆ V
(
I(V )

)
. Conversely, since V is a subvariety, V = V

(
{fi}i∈I

)
, and by the

definition of a vanishing ideal, fi ∈ I(V ) for each i ∈ I. Now, for any x ∈ V
(
I(V )

)
, x vanishes for each

f ∈ I(V ), and in particular, for each fi, so x ∈ V
(
{fi}i∈I

)
= V . ■

So V is a left inverse to I. What about the other order?

Theorem (Hilbert’s Nullstellensatz). For any ideal I ⊆ k[x1, . . . ,xn],

I
(
V(I)

)
=

√
I

With the previous result, V and I are inverse maps when restricted to radical ideals. In this way, Hilbert’s
Nullstellensatz implies a bijection{

affine subvarieties of An
} I
−→
←−
V

{
radical ideals of k[x1, . . . ,xn]

}
So every radical ideal is in fact a vanishing ideal.

If V is a subvariety of W , then the functions vanishing on W also vanish on V . So I(V ) ⊆ I(W ), so this
correspondence is order-reversing. More generally, V is also order-reversing on all ideals, not necessarily
radical.

Moreover, this order-reversing correspondence implies that every maximal ideal in k[x1, . . . ,xn] is the
ideal of functions vanishing at a single point (a1, . . . ,an) ∈ An. In particular, every maximal ideal has
the form ma = ⟨x1 − a1, . . . , xn − an⟩, and the corresponding subvariety is the singleton V(ma) = {a} ={
(a1, . . . ,an)

}
⊆ An. That is, under the above correspondence, the set of maximal ideals of k[x1, . . . ,xn]

is identified with the points of affine n-space An.{
points of An

} I
−→
←−
V

{
maximal ideals of k[x1, . . . ,xn]

}
Similarly, prime ideals are identified with irreducible subvarieties under this correspondence, and radical
ideals correspond to all subvarieties of An.{

irreducible affine subvarieties of An
} I
−→
←−
V

{
prime ideals of k[x1, . . . ,xn]

}
Lemma 3.8. For any subset S ⊆ An,

V
(
I(S)

)
= S

Proof. By definition, every polynomial in I(S) vanishes everywhere on S, so every point of S vanishes
under I(S), i.e. S ⊆ V

(
I(S)

)
. Since V

(
I(S)

)
is a closed set and S is the smallest closed set containing

S, S ⊆ V
(
I(S)

)
.

Conversely, let T = V
(
{fi}i∈I

)
be a closed set containing S, so fi ∈ I(S) for all i ∈ I. Then, V

(
I(S)

)
⊆

V
(
{fi}i∈I

)
= T . Since V

(
I(S)

)
is a subset of every closed set T containing S, it is a subset of the closure

S. ■

Corollary 3.8.1. If V1 ̸= V2 are closed, then I(V1) ̸= I(V2).
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That is, subvarieties can be determined by their vanishing ideals.

Corollary 3.8.2. I(S1) = I(S2) if and only if S1 = S2.

Theorem 3.9. Any strictly descending chain of subvarieties of Ank is finite.

Proof. Let
V1 ⊃ V2 ⊃ V3 ⊃ · · ·

a descending chain of subvarieties. Then,

I(V1) ⊂ I(V2) ⊂ I(V3) ⊂ · · ·

is an ascending chain of ideals. Since k[x1, . . . ,xn] is Noetherian, this chain must be finite, and since
Vi = V

(
I(Vi)

)
, the chain of subvarieties is finite. ■

Lemma 3.10. Given {fi} ⊆ k[x1, . . . ,xn],

I
(
V({fi}i∈I)

)
⊇
√
⟨fi⟩

Example. Let k = R, and I = ⟨x2+1⟩ ⊆ R[x]. I is a radical ideal, and V(x2+1) = ∅, so I
(
V(x2+1)

)
=

I(∅) = R[x] ⊇
√
I = I. △

4 The Coordinate Ring

We have seen a correspondence between the geometry of affine n-space An and various ideals of the
C-algebra C[x1, . . . ,xn]. For a subvariety V , what C-algebra describes the subvarieties of V ?

Often, to understand an object, we instead study natural classes of functions defined on them. In
topology, we study continuous functions on topological spaces; in differential geometry, we study smooth
maps on smooth manifolds; and in complex geometry, we study holomorphic maps on complex manifolds.
In algebraic geometry, the maps of choice are polynomials.

Let V ⊆ An be an affine subvariety. Given any polynomial p ∈ C[x1, . . . ,xn], the restriction p
∣∣
V

defines
a function V → C. Under the usual pointwise addition and multiplication operations, the set of these
functions naturally form a C-algebra C[V ] called the coordinate ring of V . In particular, the coordinate
ring of the whole affine space An is C[An] = C[x1, . . . ,xn], as expected.

The elements of C[V ] are restrictions of polynomials on An, but we usually denote them by the original
polynomials. This may be slightly confusing, as two ostensibly different polynomials may agree when
restricted to V .

Example. Consider the variety V = V(y − x) of An. Then, the polynomials xy + 1, x2 + 1, and y2 + 1
are all the same polynomial on V , since y = x on V . △

Restriction defines a surjective ring homomorphism C[x1, . . . ,xn] → C[V ]. By definition, the kernel of
this homomorphism is precisely the vanishing ideal I(V ), so by the first isomorphism theorem,

C[V ] ∼=
C[x1, . . . ,xn]

I(V )

Which C-algebras are coordinate rings?

Recall that a ring R is reduced if for all elements x ∈ R, whenever xn = 0 for some n > 0, then x = 0.
That is, 0 is the only nilpotent element in R.

Lemma 4.1. An ideal I is radical if and only if R/I is reduced.
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Theorem 4.2. R is a finitely generated reduced C-algebra if and only if R is the coordinate ring of some
affine subvariety V of affine space.

Proof. As the quotient of a finitely generated C-algebra C[x1, . . . ,xn] by a radical ideal I(V ), coordinate
rings are finitely generated reduced C-algebras.

Now, suppose R is a finitely generated reduced C-algebra. Pick generators a1, . . . ,an ∈ R. Then, there
exists a unique C-algebra homomorphism Φ : C[x1, . . . ,xn] → R with Φ(xi) = ai. Because the ai generate
R, Φ is surjective, so by the first isomorphism theorem,

R ∼=
C[x1, . . . ,xn]

ker(Φ)

Since R is reduced, ker(Φ) is radical and hence determines a subvariety V = V
(
ker(Φ)

)
of An. So,

ker(Φ) = I(V ) and hence R is the coordinate ring C[V ]. ■

Specifically, the relations between the generators a1, . . . ,an determine the ideal I(V ). Selecting a different
set of generators b1, . . . ,bm ∈ R would then yield a different subvariety W of Am with R ∼= C[W ]. We
will soon define a notion of isomorphism between subvarieties that identify W and V .

Example. Let R = C[t] and consider the generators x = t and y = 1. These generators satisfy the
relation y − 1 = 0, so

R ∼=
C[x,y]
⟨y − 1⟩

This choice of generators corresponds to the subvariety V = V(y − 1) ⊆ A2
x,y.

If we instead choose the generators a = t2, b = 2t, and c = 1− t, the relations are then a− b− c2+1 = 0,
so

R ∼=
C[a,b,c]

⟨a− b− c2 + 1⟩

This choice of generators corresponds to the subvariety W = V(a− b− c2 + 1) ⊆ A3
a,b,c. △

So far, we have been viewing subvarieties as certain subsets of affine n-space An. However, as we have
seen above, we cannot precisely recover a subvariety V from the coordinate ring C[V ], and can only do
so up to isomorphism.

The subvarieties V and W are all isomorphic and embed the same subvariety A1 into A2 and A3 respec-
tively. So, we want a definition that captures the notion of a subvariety is an entity by itself that does
not depend on an ambient embedding.

Before, we have seen a correspondence between certain geometric features of An and the polynomial ring
C[x1, . . . ,xn] = C[An]. We will now establish an analogous correspondence between geometric features
of an arbitrary affine subvariety V and its coordinate ring C[V ].

Recall that, given an ideal I of R, the quotient map π : R→ R/I induces a bijection

{ideals of R/I}
∼=−→ {ideals of R containing I}

J 7→ π−1[J ]

Since R/I
J

∼= R
π−1[J] , this bijection sends prime, maximal, and radical ideals to prime, maximal, and

radical ideals, respectively.

{
ideals of C[V ]

} ∼=
{

ideals of
C[x1, . . . ,xn] containing I

}
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{
radical

ideals of C[V ]

}
∼=
{

radical ideals of
C[x1, . . . ,xn] containing I

}
∼=
{

all
subvarieties W ⊆ V

}
{ prime

ideals of C[V ]

}
∼=
{ prime ideals of
C[x1, . . . ,xn] containing I

}
∼=
{

irreducible
subvarieties W ⊆ V

}
{

maximal
ideals of C[V ]

}
∼=
{

maximal ideals of
C[x1, . . . ,xn] containing I

}
∼=
{ points
(a1, . . . ,an) ∈ V

}

Thus, the Zariski topology on V , the points of V , and the subvarieties of V are all encoded in the C-
algebra structure of C[V ]. This gives us a way to think of a subvariety V independently from its original
construction as a subset of An.

An affine variety is a subvariety of An together with its Zariski topology and coordinate ring.

4.1 The Pullback Homomorphism
Just as each affine variety induces a unique C-algebra as its coordinate ring, every morphism of affine
varieties determines a unique C-algebra homomorphism between their coordinate rings in reverse direc-
tion.

Given any morphism F : V → W , there is a map of coordinate rings C[W ] → C[V ] defined by precom-
position by F :

C[W ] → C[V ]

g 7→ g ◦ F

called the pullback of F , denoted by F ♯.

Lemma 4.3. For any morphism F : V → W , the pullback map F ♯ : C[W ] → C[V ] is a C-algebra
homomorphism.

Example. Consider the morphism F of affine varieties defined by

A3
x,y,z → A2

u,v

(x,y,z) 7→ (x2y,x− z)

The pullback F ♯ is then defined by

C[u,v] → C[x,y,z]
u 7→ x2y

v 7→ x− z

△

Lemma 4.4. Given distinct points p,q ∈ V , there exists a polynomial g ∈ C[V ] such that g(p) ̸= g(q).

Proof. Since V ⊆ Anx1,...,xn
, if p ̸= q, then they must differ in some coordinate xi. Then, the polynomial

xi will do. ■

Theorem 4.5. Given morphisms F,G : V →W , F = G if and only if F ♯ = G♯.

Proof. The forward direction is obvious. Conversely, suppose F ̸= G, so there exists x ∈ V such that
F (x) ̸= G(x). By the previous lemma, there is a polynomial g ∈ C[W ] such that

F ♯(g)(x) = g
(
F (x)

)
̸= g
(
G(x)

)
= G♯(g)(x)

so F ♯(g) ̸= G♯(g), and hence F ♯ ̸= G♯. ■
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4.2 The Equivalence of Algebra and Geometry

Lemma 4.6. Given F : V →W and G :W → X, (G ◦ F )♯ = F ♯ ◦G♯.

Theorem 4.7. Every homomorphism σ : S → R of finitely generated reduced C-algebras can be realised
essentially uniquely as the pullback of a morphism F : V →W of affine varieties.

That is, there exist affine varieties V and W with identifications C[V ] ∼= C and C[W ] ∼= S and a
morphism F : V →W such that under these identifications, F ♯ = σ:

C[V ] C[W ]

S R

F ♯

∼=∼=

σ

Furthermore, the choices of V , W , and F are unique up to unique isomorphism, so if there exist V ′ and
W ′ with identifications C[V ′] ∼= R and C[W ] ∼= S, and a morphism F ′ : V ′ → W ′ such that under these
identifications (F ′)♯ = σ, then there exist unique isomorphisms α : V → V ′ and β : W → W ′ such that
the following diagram commutes:

C[V ] C[W ]

S R

C[V ′] C[W ′]

F ♯

∼=∼=

σ

∼=

α♯

∼=

β♯

(F ′)♯

Corollary 4.7.1. V ∼=W if and only if C[V ] ∼= C[W ].

In summary, just as geometry determines algebra, algebra also determines geometry; every finitely gen-
erated reduced C-algebra is equivalent to an affine variety V via R ∼= C[V ], and every homomorphism
ϕ : S → R of C-algebras is equivalent to a morphism F : V →W of affine varieties by pullback.

5 The Spectrum of a Ring

We have seen how C[V ] determines V up to isomorphism; by picking n generators for C[V ], we obtain
an embedding V ↪→ An. However, we can reconstruct V from C[V ] “abstractly”, not as a subset of An.

The maximal spectrum of a commutative ring R is the set of maximal ideals of R:

maxSpec(R) := {m ⊂ R : m is a maximal ideal}

So, by Hilbert’s Nullstellensatz, there is a bijection

V
∼=−→ maxSpec

(
C[V ]

)
a 7→ mx = I

(
{a}
)

We can transport the Zariski topology on V to a topology on maxSpec
(
C[V ]

)
as follows. The points of

a Zariski-closed set W ⊆ V correspond to the set of maximal ideals in C[V ] that contain I[W ], so the
closed sets of maxSpec

(
C[V ]

)
are sets of maximal ideals of C[V ] containing some given ideal of C[V ].

Given any commutative ring R and an ideal I of R, we define a notion of a vanishing locus on the
maximal spectrum as:

Vms(I) :=
{
m ∈ maxSpec(R) : m ⊇ I

}
⊆ maxSpec(R)

Algebraic Geometry | 16



MAH4J3 The Spectrum of a Ring

The Zariski topology on maxSpec(R) is the topology whose closed sets are precisely the sets of the form
Vms(I) for I an ideal of R.

This gives us a way to define affine varieties without reference to any embeddings in affine space; for any
finitely generated reduced C-algebra R, maxSpec(R) is the corresponding affine variety.

Note, however, that the definition of a maximal spectrum and vanishing locus apply to any commutative
ring, and not only finitely generated reduced C-algebras.

Example. Let R = Z. Then,
maxSpec(R) =

{
⟨p⟩ : p is prime

}
Since Z is a principle ideal domain, every ideal is of the form I = ⟨n⟩, so

Vms(I) =
{
⟨p⟩ : ⟨m⟩ ⊆ ⟨p⟩

}
=
{
⟨p⟩ : p | m

}
△

We have seen that every morphism V → W induces a C-algebra homomorphism C[W ] → C[V ] by
pullback. Does every morphism also induce a morphism maxSpec

(
C[V ]

)
→ maxSpec

(
C[W ]

)
of maximal

spectra?

Lemma 5.1. Let F : V →W be a morphism, and let x ∈ V . Then,

(F ♯)−1(mx) = mF (x)

Given a C-algebra homomorphism σ : C[W ] → C[V ], we define the map of maximal spectra

σ♭ : maxSpec
(
C[V ]

)
→ maxSpec

(
C[W ]

)
m 7→ σ−1[m]

Then, for any morphisms F : V →W , the following diagram commutes:

maxSpec
(
C[V ]

)
maxSpec

(
C[W ]

)

V W

(F ♯)♭

∼=

F

∼=

So, morphisms of affine varieties are recoverable purely algebraically from maximal spectra of finitely
generated reduced C-algebras.

It seems that affine varieties are well-described by maximal spectra, and we may think to generalise this
theory to maximal spectra of arbitrary commutative rings. Unfortunately, while the maximal spectrum
construction still yields a topological space, we run into trouble when constructing maps between maximal
spectra.

For instance, given a ring homomorphism σ : R→ S, we would like

σ♭ : maxSpec(S) → maxSpec(R)

m 7→ σ−1[m]

to be a well-defined continuous map of topological spaces. However, the preimage of a maximal ideal
under an arbitrary ring homomorphism is not necessarily a maximal ideal.
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Example. Let σ : Z ↪→ Q be the inclusion map. As a field, the trivial ideal is maximal, but the preimage
of the trivial ideal in Q is the trivial ideal in Z, which is not maximal. △

Theorem 5.2. The preimage of a prime ideal under a ring homomorphism is prime.

Proof. Let ϕ : R→ S be a ring homomorphism, I be an ideal of S, and J = ϕ−1[I]. Suppose that J = R.
Then, 1R ∈ J , so ϕ(1R) = 1S ∈ I, so I = S, contradicting that I is prime. So J is a proper ideal.

Now, suppose ab ∈ J , so ϕ(ab) = ϕ(a)ϕ(b) ∈ I. Since I is prime, ϕ(a) ∈ I or ϕ(b) ∈ I, so a ∈ J or b ∈ J .
So J is prime. ■

The spectrum of a commutative ring is the set of prime ideals of R:

Spec(R) := {p ⊂ R : p is a prime ideal}

Again, we define a notion of a vanishing locus on the spectrum as:

Vs(I) :=
{
p ∈ Spec(R) : p ⊇ I

}
⊆ Spec(R)

and the Zariski topology on Spec(R) is again the topology whose closed sets are precisely the sets of the
form Vs(I) for I an ideal of R.

The spectrum of a ring, equipped with its Zariski topology, is what Grothendieck called an affine scheme.

While the maximal spectrum maxSpec
(
C[V ]

)
of a coordinate ring C[V ] is canonically isomorphic to

V , the spectrum Spec
(
C[V ]

)
contains more information and is canonically isomorphic to the set of

irreducible subvarieties of V .

We write V sch to abbreviate Spec
(
C[V ]

)
.

Example. TODO △

6 Morphisms of Affine Schemes

Since primeness of ideals is preserved under ring homomorphism preimages, given a ring homomorphism
σ : S → R, we can again define a map of spectra:

σ♭ : Spec(R) → Spec(S)

p 7→ σ−1[p]

Lemma 6.1. σ♭ is continuous with respect to the Zariski topology.

A morphism of affine schemes is the data of a ring homomorphism σ : S → R inducing a map σ♭ :
Spec(R) → Spec(S)

An affine scheme over C is a spectrum Spec(R) of a not necessarily reduced or finitely generated C-
algebra R.

7 Projective Varieties

Let k be any field. Then, n-dimensional projective space over k, denoted Pnk is the set of 1-dimensional
subspaces of kn+1. We will write Pn for n-dimensional complex projective space PnC.

Projective n-space can also be interpreted as the quotient

Pn =
Cn+1 \

{
(0, . . . ,0)

}
∼
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where ∼ identifies two points that lie on the same line through the origin. That is, (x0, . . . ,xn) ∼
(y0, . . . ,yn) if and only if there exists a non-zero scalar λ ∈ C such that (y0, . . . ,yn) = λ(x0, . . . ,xn).

A point in this space can then an equivalence class[
(z0, . . . ,zn)

]
=
{
(λz0, . . . ,λzn) : λ ∈ C

}
where at least one of the coordinates z0, . . . ,zn must be non-zero. We denote a representative of the
equivalence class of a point (z0, . . . ,zn) by [z0 : · · · : zn], called a homogeneous coordinate. This notation
emphasises that homogeneous coordinates are really just ratios of coordinates, and are defined only up
to non-zero scaling: [z0 : · · · : zn] = [λz0 : · · · : λzn] for any non-zero λ ∈ C.

Pn =
{
[z0 : . . . : zn] : ∃i, zi ̸= 0

}
Example. [1 : 2] = [ 12 : 1] = [i : 2i] ∈ P1. These all represent the line

{
(z0,z1) : z1 = 2z0

}
⊆ C2. △

0-dimensional projective space P0 is the set of all complex lines through the origin in C1, of which there
is only C1 itself, so P0 = {C1} is a singleton.

1-dimensional projective space P1 is the set of all complex lines through the origin in C2. By fixing a
reference line – any complex line not through the origin, say z0 = 1 – we can choose a representative for
almost every point as the unique point on the reference line where the line through the origin intersects
the reference line. Only one point in P1 will fail to have a representative under this scheme, namely the
unique line through the origin parallel to the reference line, called the point at infinity.

z0 = 0

z1 = 0

z0 = 1

(1,a)

Each line La of slope a can be represented by homogeneous coordinate:

La =
{
(z0,az0)

}
= [z0 : az0]

= [1 : a]

while the vertical line z0 = 0 has coordinate:

L∞ = {z0 = 0}
= [0 : z0]

= [0 : 1]

So, we have a bijection

P1 \
{
[0 : 1]

} ∼= {coordinates with z0 = 1}
La = [z0,az0] 7→ [1,a]

and by discarding the first coordinate, we have a further isomorphism (as affine varieties):

{coordinates with z0 = 1} ∼= A1
C
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[1,a] 7→ a

or directly,

P1 \
{
[0 : 1]

} ∼= A1
C

[z0,z1] 7→ z1
z0

Adding in the point at infinity, this identifies P1 with the Riemann sphere

P1 ∼= C ∪ {∞}

[z0,z1] 7→

{
z1
z0

z0 ̸= 0

∞ z0 = 0

We could have also fixed the horizontal line z1 = 1:

z0 = 0

z1 = 0

z1 = 1
(b,1)

This time, every line Lb with slope 1
b through the origin is of the form [b : 1], while the horizontal line

z1 = 0 has coordinate [1 : 0].

In P2, we can similarly select a reference plane not passing through the origin, and identify lines through
the origin with their intersection with the reference plane. The exceptions will be the lines through the
origin parallel to the reference plane – that is, a copy of P1.

P2 ∼= C2 ∪ P1 = C2 ∪ C ∪ {∞}

For instance, if we have coordinates z0,z1,z2 for C3, and select the reference plane z0 = 1, the identification
sends the homogeneous coordinate [z0 : z1 : z2] ∈ P2 to ( z1z0 ,

z2
z0
) ∈ C2 whenever z0 ̸= 0, and to [z1 : z2] ∈ P1

when x0 = 0.

Generalising this to arbitrary dimensions,

Pn ∼= Cn ∪ Pn−1

[z0 : z1 : · · · : zn] 7→

{
( z1z0 , . . . ,

zn
z0
) z0 ̸= 0

[z1 : · · · : zn] z0 = 0

We define the set U0 to be the set of points for which z0 is non-zero. Under the above mapping, U0 is
identified with the hyperplane z0 = 1 in Cn+1, which can be identified with Cn:

[z0 : z1 : · · · : zn] =
[
1 :

z1
z0

: · · · : zn
z0

]
7→
(
1,
z1
z0
, . . . ,

zn
z0

)
∼=
(
z1
z0
, . . . ,

zn
z0

)
The remaining points for which z0 = 0 are then the points at infinity; the lines through the origin in
Cn+1 parallel to the hyperplane z0 = 1, isomorphic to Pn−1.
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The choice of z0 in the above is arbitrary. We define the set Ui to be the subset of Pn of points with
zi ̸= 0

Ui =
{
[z0 : · · · : zn] ∈ Pn : zi ̸= 0

}
= Pn \ {1-dimensional subspaces of V(z0)}

isomorphic to An by dividing by and discarding the ith component:

ψi : Ui → An

[z0 : · · · : zn] 7→
(
z0
zi
, . . . ,

ẑi
zi
, . . .

zn
zi

)
This isomorphism is called the ith affine chart on Pn.

Example. In P1, we have

U0 =
{
[z0 : z1] : z0 ̸= 0

}
=
{
[1 : a] : a ∈ C

} ∼= A1
a

U1 =
{
[z0 : z1] : z1 ̸= 0

}
=
{
[b : 1] : b ∈ C

} ∼= A1
b

△

The collection of all the affine charts yields a cover of Pn by n+ 1 copies of An:

Pn =

n⋃
i=0

Ui

Since Pn is the quotient of Cn+1 \ {0}, this Pn inherits a standard quotient topology from Cn+1. In this
topology, the affine charts are open.

The open cover {Ui} of Pn defines an atlas making projective space a complex n-dimensional manifold;
we can move between charts via the transition functions

ψj ◦ ψ−1i : ψi(Ui ∩ Uj) → ψj(Ui ∩ Uj)

and these are not only holomorphic, but in fact rational. For instance,

ψn ◦ ψ−10 (a1, . . . ,an) = ψn
(
[1 : a1 : · · · : an]

)
=

(
1

an
,
a1
an
, . . . ,

an−1
an

)

Example. On the intersection U0∩U1 ⊆ P1, both components of a homogeneous coordinate are non-zero,
and we can translate between the two as:

A1 ∼= U0 ∋ a 7→ [1 : a] = [ 1a : 1] = 1
a ∈ U1

∼= A1

so b = 1
a , and hence U0 ∩ U1

∼= A1 \ {0}. △

7.1 Projective Varieties
An element [z0 : · · · : zn] ∈ Pn has many representations, given by scaling every component by some
λ ̸= 0, so something like: {

[z0 : · · · : zn] : z0 = 5
}

is not well-defined. However, if zi = 0 then λzi = 0 for any λ, so this is well-defined, like the affine
charts.

Similarly, given any non-constant polynomial f ∈ C[z0, . . . ,zn], the value of f(z0, . . . ,zn) and f(λz1, . . . ,λzn)
may not agree, so f does not define a function Pn → C since its value depends on the choice of homoge-
neous coordinates.

A polynomial is homogeneous if all of its terms have the same total degree.
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Example. The polynomial x2y + 2z3 ∈ C[x,y,z] is homegeneous of degree 3. △

Lemma 7.1. If f(z0, . . . ,zn) is homogeneous of degree d, then

f(λz0, . . . ,λzn) = λdf(z0, . . . ,zn)

Example. If f(x,y,z) = x2y + z3, then

f(λx,λy,λz) = (λx)2(λy) + (λz)3

= λ3x2y + λz3

= λ3f(x,y,z)

△

Corollary 7.1.1. If f is homogeneous and p ∈ Pn, then either for all choices of representatives [z0 :
· · · : zn] of p, f(z0, . . . ,zn) = 0; or for all choices of representatives [z0 : · · · : zn] of p, f(z0, . . . ,zn) ̸= 0.

That is, a homogeneous polynomials only vanish along lines through the origin; if a homegeneous poly-
nomial vanishes at a point, it must vanish along the entire line through the origin containing that point.
Thus, the set of zeros in Cn+1 of a homogeneous polynomial is the union of complex lines through the
origin. So, while a homogeneous polynomial in n+ 1 variables does not define a function on Pn, it still
makes sense to talk about its vanishing locus in Pn.

If f ∈ C[z0, . . . ,zn] is a homogeneous polynomial, then we define its projective vanishing locus to be

V(f) =
{
[z0 : . . . : zn] : f(z0, . . . ,zn) = 0

}
⊆ Pn

A subvariety of Pn is the vanishing locus V
(
{fi}i∈I

)
of some collection {fi}i∈I ⊆ C[z0, . . . ,zn] of homo-

geneous polynomials in n+ 1 variables.

A projective variety is a closed subvariety of some Pn.

The Zariski topology on Pn is then the topology in which the closed subsets are precisely the subvarieties
of Pn.

Example. Consider the projective subvariety V = V(x2 + y2 − z2) ⊆ P2. We can write it as the union of
its coordinate charts:

V = (V ∩ Ux) ∪ (V ∩ Uy) ∪ (V ∩ Uz)

On the chart Uz defined by z ̸= 0, the variety looks like a complex circle; identifying Uz with C2, the
curve in Uz is defined by the vanishing locus of x2 + y2 − 1, while on the charts Ux and Uy, the curves
are given by 1 + y2 − z2 = 0 and x2 + 1− z2 = 0, respectively. △

As in the example, the intersection of any projective variety V with one of the affine charts of Pn is an
affine variety. Specifically, if Ui is an open set of Pn where the component zi is non-zero, isomorphic to
An, then setting the variable zi to 1 in the defining polynomials for V yields a set of defining polynomials
for V ∩ Ui. So, just as projective space is covered by affine charts, we can think of a projective variety
as being covered by affine varieties.

Another way to visualise a projective variety in Pn is to imagine a cone-shaped variety in Cn+1, but
then to identify all points lying on the same line through the origin. The variety in Cn+1 defined by a
collection of homogeneous polynomials is then called the affine cone over the projective variety in Pn
defined by the same homogeneous polynomials.

Given a not-necessarily homogeneous polynomial f ∈ C[z0, . . . ,zn], we say that f vanishes at a point
p ∈ Pn or write f(p) = 0, if f(z0, . . . ,zn) for all choices of representative [z0 : · · · : zn] = p, or
equivalently, if the line Lp ⊆ Cn+1 corresponding to p is entirely contained within the affine vanishing
locus V(f) ⊆ Cn+1.
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Any polynomial f ∈ C[z0, . . . ,zn] can be expressed uniquely as a sum

f = f0 + f1 + · · ·+ fd

where fi is homogeneous of degree i. The polynomial fi is called the ith homogeneous component of f .

Theorem 7.2. Let f ∈ C[z0, . . . ,zn] and p ∈ Pn such that f(p) = 0. Then, for each homogeneous
component fi of f , fi(p) = 0

Proof. Pick a representative p = [p0 : · · · : pn], so

0 = f(p0, . . . ,pn)

= f0(p0, . . . ,pn) + · · ·+ fd(p0, . . . ,pn)

Since f(p) = 0, f also vanishes at λ[p0 : · · · : pn] for any non-zero λ ∈ C:

0 = f(λp0, . . . ,λpn)

= λ0f0(p0, . . . ,pn) + · · ·+ λdfd(p0, . . . ,pn)

This is a polynomial in λ that vanishes for all non-zero λ, and must therefore be the zero polynomial.
So the coefficients fi(p0, . . . ,pn) must all also vanish. Since the choice of representative was arbitrary,
fi(p) = 0. ■

An ideal I ⊆ C[z0, . . . ,zn] is homogeneous if it can be generated by homogeneous polynomials, or equiv-
alently, whenever f ∈ I, each homogeneous component of f is also in I.

Suppose V ⊆ Pn is a projective variety. Then, the set{
f ∈ C[z0, . . . ,zn] : ∀p ∈ V, f(p) = 0

}
is called the homogeneous vanishing ideal of V and is denoted by I(V ).

Lemma 7.3. I(V ) is a homogeneous radical ideal of C[z0, . . . ,zn].

Theorem 7.4 (Projective Nullstellensatz). There is an inclusion-reversing bijective correspondence

{projective varieties in Pn} ∼= {radical homogeneous ideals in C[z0, . . . ,zn]} \
{
⟨z0, . . . ,zn⟩

}
V 7→ I(V )

V(I) 7→I

Given a projective variety V ⊆ Pn, its homogeneous coordinate ring is the quotient

C[z0, . . . ,zn]
I(V )

Note that this is equal to the affine coordinate ring of the affine cone over V . Elements of this ring are
also not functions on V , and are instead functions on the affine cone over V . This ring also depends on
the embedding of V in Pn, and not just the isomorphism class of V .

Given any subset X ⊆ Pn, X inherits the Zariski topology as the subspace topology, where closed subsets
of X are sets of the form X ∩ V for V ⊆ Pn a projective variety.
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7.2 Homogenisation
Given any polynomial f ∈ C[x1, . . . ,xn] of degree d in n variables, we can homogenise the polynomial
into a homogeneous polynomial f+ ∈ C[z0, . . . ,zn] of degree d in n + 1 variables by “padding” lower
degree components with a new variable.

Decomposing f into its homogeneous components,

f = f0 + f1 + · · ·+ fd−1 + fd

the homogenisation f+ is given by multiplying each fi by zd−i0 , and replacing each xi with zi:

f+ = zd0f0 + zd−10 f1 + · · ·+ z0fd−1 + fd

Example. The polynomial 2 + 3x1 + 4x21x2 + 5x32 is degree 3. The homogenisation is given by

2z30 + 3z20z1 + 4z21z2 + 5z32

△

Equivalently, we can replace each xi with zi
z0

, then multiply through by zd0 .

We can also dehomogenise a homogeneous polynomial f ∈ C[z0, . . . ,zn] with respect to a variable zi to
obtain a polynomial in f◦ ∈ C[x1, . . . ,xn] by evaluating f(z0, . . . ,zn) at (x1, . . . ,zi = 1, . . . ,xn). This
corresponds to restricting the homogenised polynomial to the affine chart Ui.

The dehomogenisation of a degree d homogeneous polynomial f (with respect to z0 for example) can be
seen as two steps:

f(z0, . . . ,zn)

divide
by zd07→ f(z0, . . . ,zn)

zd0

xi=
zi
z07→ polynomial in x1, . . . ,xn

Thus, the following are equivalent:

• [z0 : · · · : zn] ∈ V(f) ∩ U0;

• ( z1z0 , . . . ,
zn
z0
) = (x1, . . . ,zn) ∈ An;

• f(z0, . . . ,zn) = 0 and z0 ̸= 0;

• 1
zd0
f(z0, . . . ,zn) = 0;

• f(1, z1z0 , . . . ,
zn
z0
) = 0;

• f(1,x1, . . . ,xn) = 0;

• f◦(x1, . . . ,xn) = 0.

So, there is a bijection

V(f) ∩ U0
ψ0−−→∼= V(dehomogenisation of f with respect to z0)

Lemma 7.5. If {Fα} is a set of homogeneous polynomials in z0, . . . ,zn and fα is the dehomogenisation
of Fα with respect to zi, then

ψi : V
(
{Fi}

)
∩ Ui → V

(
{fi}

)
is a bijection.

Corollary 7.5.1. If V ⊆ Pn is a projective subvariety, then V ∩ Ui ⊆ U ∼= An is an affine subvariety of
An under the identification ψi : Ui

∼=−→ An.

Algebraic Geometry | 24



MAH4J3 7.3 Projective Closures

Lemma 7.6. For any f ∈ C[x1, . . . ,xn],
(f+)◦ = f

where the dehomogenisation is with respect to z0.

Corollary 7.6.1. Given {fα} ⊆ C[x1, . . . ,xn] and W = V
(
{fα}

)
⊆ An, define V = V

(
{f+α }

)
⊆ Pn.

Then,
ψ0(V ∩ U0) =W

So, the affine subvarieties W of U0
∼= An are precisely the sets V ∩ U0, where V ⊆ Pn is a projective

subvariety. In other words, the Zariski topology on U0 as a subspace topology of Pn is the same as the
Zariski topology on U0

∼= An.

Note that the dehomogenisation map {homogeneous polynomials inz0, . . . ,zn} → C[x1, . . . ,xn] is not
injective, since

(zki F )
◦ = F ◦

where the dehomogenisation is with respect to zi; extra factors of the new variable are discarded under
dehomogenisation.

Lemma 7.7. Let F ∈ C[z0, . . . ,zn] be a homogeneous polynomial, and suppose F = zk0G where z0 ∤ G.
Then,

(F ◦)+ = G

Corollary 7.7.1. Two homogeneous functions F1 and F2 have equal dehomogenisations with respect to
z0 if an only if there exists a polynomial G such that z0 ∤ G and F1 = zk0G and F2 = zℓ0G for some
k,ℓ ∈ N.

7.3 Projective Closures

Let V be an affine variety, with a fixed embedding V ⊆ An ⊆ Pn. The projective closure V of V is the
closure of V in Pn. The closure may be computed in either the Zariski or standard topology on Pn; the
result will be the same.

Given an affine variety V = V(F1, . . . ,Fr) ⊆ An, we’d might think that the projective closure V of V in
Pn might be defined by the ideal obtained by replacing each of the polynomials Fi with its homogenisation
F+.

Example. Consider the parabola V = V(y − x2) ⊆ A2 ⊆ P2. The variables x and y are the affine
coordinates for V in A2, while in P2, we use homogeneous coordinates x, y, and z, and identify A2 with
the open affine chart Uz where z is non-zero (say, z = 1).

The points of the parabola in P2 are then the lines through the origin in C3 connecting to the points on
the parabola in the plane z = 1, i.e. picture the affine cone modulo scaling. There is a line “missing” from
this cone – namely the y-axis where the two branches of the parabola asymptotically converge together.

As a projective variety, the parabola is described by yz − x2 in P2, so the projective closure of y − x2 is
yz − x2. △

In this case, the closure is indeed given by the homogenisation. However, this does not work in general.

Example. Let T = V(y − x2,z − xy) ⊆ An. We have z − xy = z − x3, so the points of this variety are of
the form (x,x2,x3), so T is the twisted cubic, i.e. the image of the map A1

t → A3
x,y,z : t 7→ (t,t2,t3). What

is the projective closure of T?

The homogenisations of the polynomials are given wy−x2 and wz−xy. Let V = V(wy−x2,wz−xy) ⊆ P3.
By construction, V ∩ Uw = T (i.e. set w = 1). What about V \ T?
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First,
V \ T = V \ (V ∩ Uw) = V \ Uw = V ∩ V(w)

so, setting w = 0 in the defining polynomials for V , we have wy−x2 = −x2 = 0 and wz−xy = −xy = 0,
so x = 0.

So, V also contains the point [0 : y : z : 0] where x = 0 = w. However, the set W = T ∪
{
[0 : 0 : 1 : 0]

}
is a closed set strictly contained in V , so V is not the minimal closed set containing T , i.e., V ̸= T . △

Theorem 7.8. Let V ⊆ An ⊆ Pn be an affine variety, and let I = I(V ) ⊆ C[x1, . . . ,xn] be the radical
ideal of all polynomials vanishing on V . Then, the ideal J = ⟨f+ | f ∈ I⟩ of C[z0, . . . ,zn] generated by
the homogenisations of all the elements of I is the radical homogeneous ideal of polynomials vanishing
on the projective closure V in Pn.

The ideal J is called the homogenisation of the ideal I.

The problem in the previous example is that we only homogenised the polynomials y − x2 and z − xy.
The previous theorem says that if we instead homogenise all the polynomials in the ideal closure of y−x2
and z − xy, the generated ideal would then correspond to the projective closure.

7.4 Morphisms of Projective Varieties

Consider the map f : P1
[s:t] → P2

[x:y:z] defined by [s : t] 7→ [s2 : st : t2].

This map is well-defined since

[s : t] = [λs : λt] 7→ [λ2s2 : λ2st : λ2t2] = [s2 : st : t2]

and since [s : t] ∈ P1
[s:t], s and t cannot simultaneously vanish, so the first and last coordinate of

[s2 : st : t2] cannot simultaneously vanish, so f does not map onto the origin. More generally, any map
between projective spaces is well-defined if it is given in coordinates by homogeneous polynomials of the
same degree with empty common vanishing loci.

Since in the image of f , we have x = s2, y = st, and z = t2, the coordinates satisfy the relation xz = y2,
so the image of f lies on the curve C = V(xz − y2) in P2. Let us examine f on affine charts.

If s ̸= 0, then x = s2 ̸= 0, so f |Us ⊆ Ux. Similarly, f |Ut ⊆ Uz.

On Us, we have s ̸= 0, so x = s2 ̸= 0 and f |Us ⊆ Ux:

f |Us : Us → Ux
[s : t] = [1 : ts ] 7→ [1 : ts ,

t2

s2 ]

Identifying Us with A1
a and Ux with A2

u1,u2
, this map is:

f |Us : A1
a → A2

u1,u2

a 7→ (a,a2)

This is a morphism of affine varieties, whose image is the parabola V(u2 − u21)
∼= C ∩ Ux in the plane.

Similarly, on Ut, f |Ut : A1
b → A2

v1,v2 is described by b 7→ (b2,b). Again, the image is a parabola V(v22 −v1)
in the plane.

Thus, f : P1 → C restricts localy on the coordinate charts covering P1 to a morphism of affine varieties.
This motivates the following definition.

Let V ⊆ Pn and W ⊆ Pm be projective varieties. A map of sets F : V →W is a morphism of projective
varieties if F is locally a polynomial map at every point of V . That is, for each p ∈ V , there exists an
open neighbourhood U ⊆ V of p and homogeneous polynomials F0, . . . ,Fm ∈ C[z0, . . . ,zn] such that
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• The Fi do not simultaneously vanish on U ;

• The restriction F |U : U →W agrees with the map U → Pm defined by:

[z0 : · · · : zn] 7→
[
F0(z0, . . . ,zn) : F1(z0, . . . ,zn) : · · · : Fm(z0, . . . ,zn)

]
A morphism of projective varieties is, as usual, an isomorphism if it has an map that is also a morphism.
Two projective varieties are isomorphic if there exists an isomorphism between them.

This definition is compatible with the definition of morphisms for affine varieties.

Example. The simplest example of a isomorphism is given by a change of coordinates in Pn. Let A = (Aij)
be a full-rank (n+1)× (n+1) matrix. Then, A : Cn+1 → Cn+1 is a linear automorphism, and permutes
the 1-dimensional subspaces of Cn+1, thus inducing an automorphism Pn → Pn:

[z0 : . . . : zn] 7→

∑
j

A0jzj : · · · :
∑
j

Anjzj


△

Theorem 7.9. Every automorphism of Pn arises this way, i.e. is a linear automorphism.

Corollary 7.9.1. If λ ∈ C is a non-zero scalar, then A and λA induce the same automorphism of Pn.

Two projective varieties V,W ⊆ Pn are projectively equivalent if there exists an automorphism of Pn that
restricts to an isomorphism V →W .

Theorem 7.10. If V and W are projectively equivalent, then their homogeneous coordinate rings are
isomorphic.

Theorem 7.11. If F,G ∈ C[x,y,z] are irreducible homogeneous polynomials of degree 2, then V(F ) ⊆ P2

and V(G) ⊆ P2 are projectively equivalent.

Let A = (Aij) be an (m+1)× (n+1) matrix with trivial nullspace (so m ≥ n), representing an injective
linear map Cn+1 → Cm+1. This induces a morphism Pn → Pm that is linear in homogeneous coordinates.

This map is an embedding, i.e., is an isomorphism on to a closed subvariety of Pm, and the image is a
linear subvariety, i.e. is cut out by homogeneous polynomials of degree 1.

Theorem 7.12. If n > m, then there do not exist any non-constant morphisms Pn → Pm. If n ≤ m,
then there exist non-linear morphisms Pn → Pm.

8 Quasiprojective Varieties

A locally closed subset of a topological space X is the intersection of an open and closed subset, or
equivalently, a closed subset of an open subset.

A quasiprojective variety is a locally closed subset of Pn. A quasiprojective variety inherits the Zariski
topology from Pn.

Example. The following are quasiprojective:

• Pn = Pn ∩ Pn;

• An = U0 ∩ Pn;

• Any projective variety W ⊆ Pn, W = Pn ∩W ;

• Any closed affine variety V ⊆ An, since any affine variety can be viewed as an open subset of its
affine cone, V = U0 ∩ V .
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• Any open set X ⊆ Pn, since X = X ∩ Pn;

• Any open set Y ⊆ An, since Y ⊆ Pn is also open.

• U = A1
t \ {0} is a quasiprojective variety. To see this, embed X into Us ⊆ P1

[t:s], i.e. along the line
s = 1 via t 7→ [t : 1]. Because U is missing the origin, we remove [0 : 1] from P1, and also, the point
at infinity [1 : 0] has no preimage in A1, so it too is removed. So U = P1

[t:s] \
{
[0 : 1],[1 : 0]

}
is open

in P1, so U = U ∪ P1 is locally closed.

△

The definition of a morphism of quasiprojective varieties is the same as for projective varieties:

Let X ⊆ Pn and Y ⊆ Pm be quasiprojective varieties. A map of sets F : X → Y is a morphism of
quasiprojective varieties if F is locally a polynomial map at every point of V . That is, for each p ∈ V ,
there exists an open neighbourhood U ⊆ X of p and homogeneous polynomials F0, . . . ,Fm ∈ C[z0, . . . ,zn]
such that

• The Fi do not simultaneously vanish on U ;

• The restriction F |U : U →W agrees with the map U → Pm defined by:

[z0 : · · · : zn] 7→
[
F0(z0, . . . ,zn) : F1(z0, . . . ,zn) : · · · : Fm(z0, . . . ,zn)

]
Example. Let X = A1

t \ {0} and Y = V(xy − 1) ⊆ A2
x,y

∼= V(xy − z2) ∩ Uz ⊆ P2. Both X and Y are
quasiprojective varieties, and we have a well-defined map

F : X → Y

t 7→ (t, 1t )

We claim that this is a morphism of quasiprojective varieties. To see this, we embed X into P1 via
t 7→ [t : 1] (as before), and Y into P2 via (x,y) 7→ [x : y : 1] (since z does not vanish in V(xy − z2) ∩ Uz).
Then, F agrees everywhere on U with the morphism

F̃ : P1 → P2

[t : s] 7→ [t2 : s2 : st]

On U = P1
[t:s] \

{
[0 : 1],[1 : 0]

}
, neither t nor s vanish, so setting t = a/b, we see

U ∋ t = [t : 1]
F̃7→ [t2 : 1 : t] = [t : 1

t : 1] = (t, 1t ) ∈ Y

which agrees with F . △

Every morphism of projective varieties is a morphism of quasiprojective varieties, since the definition is
effectively identical, but also every morphism of affine varieties is a morphism of quasiprojective varieties.

Having defined quasiprojective varieties, we now redefine the concept of an affine variety.

A quasiprojective variety is affine if it is isomorphic to a closed subset of affine space, i.e. to a subvariety
of An.

Example. The open setX = A1\{0} ⊆ A1
t is an affine variety, because it is isomorphic as a quasiprojective

variety to Y = V(xy − 1) ⊆ A2
x,y: the projection map G : X → Y : (x,y) 7→ x is a morphism of

quasiprojective varieties and is the inverse of the map F : U → V defined above. △

The coordinate ring C[X] of an affine quasiprojective variety is the C-algebra C[V ], where V ⊆ An is
closed (i.e. is a affine subvariety) and X ∼= V as quasiprojective varieties. That is, if F : X → V is
an isomorphism, then the coordinate ring C[X] is the ring of functions W → C that are pullbacks of
functions in C[V ].
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Example. C
[
A1 \ {0}

]
= C[x,y]
⟨xy−1⟩

∼= C[t,t−1]. △

Similarly, a quasiprojective variety is projective if it is isomorphic to a closed subset of projective space,
i.e. to a subvariety of Pn. Unlike the case for affine varieties, this redefinition does not enlarge the class
of projective varieties.

Theorem 8.1. If X is both affine and projective, then X is isomorphic to a finite set of points.

Theorem 8.2. If X ⊆ Pn is a quasiprojective variety and there exists a closed set Y ⊆ Pm with X ∼= Y
as quasiprojective varieties, then X is closed in Pn.

8.1 Quasiprojective Varieties are Locally Affine
The Zariski topology for any quasiprojective varieties has a basis of open affine sets.This allows us to
think of every quasiprojective variety as “locally affine”, in the same way that every manifold is “locally
Euclidean”. That is, each point in a quasiprojective variety has an open neighbourhood that is an affine
subvariety.

First, observe that the complement of any hypersurface in an affine variety is again an affine variety.
Specifically, if V is a Zariski-closed subset of An and f ∈ C[V ], then the open set U = V \ V(f) is an
affine variety (though not usually a closed set/affine subvariety of V ). To see this, consider the map

F : U → An+1
x1,...,xn,z

(x1, . . . ,xn) 7→
(
x1, . . . ,xn,

1

f(x1, . . . ,xn)

)
Since f does not vanish on U by definition, this map is well-defined. Moreover, if x1, . . . ,xn,z denote
the coordinates for An+1, the original defining polynomials F1(x1, . . . ,xn), . . . ,Fr(x1, . . . ,xn) for V in
An all vanish at the image points of F , as does the polynomial zf(x1, . . . ,xn) − 1. So, the image of F
is contained in the Zariski-closed subset of An+1 defined by W = V(F1, . . . ,Fr,zf − 1), and the map
U → V(F1, . . . ,Fr,zf − 1) ⊆ An+1 is an isomorphism of quasiprojective varieties. So, V \ V(g) ∼= W is
an affine quasiprojective variety.

Lemma 8.3. The open sets of the form
V \ V(g)

where g ∈ C[V ] is non-zero and non-unit form a basis for the Zariski topology on V .

These sets are called basic affine open sets .

Theorem 8.4. There is a basis for the Zariski topology on every quasiprojective variety V ⊆ Pn con-
sisting of basic affine open sets.

Corollary 8.4.1. Quasiprojective varieties are also locally affine.

8.2 Regular Functions
Regulan functions are the generalisation of polynomial functions on affine varieties to the case of quasipro-
jective varieties.

While manifolds locally look like Euclidean space Rn, quasiprojective varieties locally look like affine
varieties. The existence of a basis of basic affine open sets means that we can view every variety as a
union of affine varieties, and so we can define a regular function locally as a function that restricts on
each affine patch to a polynomial function.

Let V be a Zariski-closed subset of An. Given f,g ∈ C[V ], the rational expression f
g is locally well-defined

on V \ V(g).
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Theorem 8.5. If W ∼= V \ V(g), then

C[W ] ∼= C[V ][ 1g ]
∼=

C[V ][z]

⟨zg − 1⟩

On the chart V \ V(g), the function 1
g is identified with the polynomial z on An+1, and the function f

g

is identified with the polynomial zf on An+1. We now extend this definition to affine varieties that are
not necessarily closed in An+1.

Let U be any open subset of a Zariski-closed subset V of affine space. A function F :→ C is regular at
p ∈ U if there exist f,g ∈ C[V ] such that

• g(p) ̸= 0;

• there exists an open neighbourhood W ⊆ U of p such that g is non-zero on W , and F |W = f
g .

F is regular on U if it is regular at every point p ∈ U .

Example. The slope function

f : U = A2 \ V(x) → C

(x,y) 7→ y

x

is regular on U . △

We define OV (U) to be the set of regular functions U → C:

OV (U) = {F : U → C : F regular} ⊆ C[V ]

This set is a C-algebra under pointwise addition, multiplication, and scaling of functions.

Example. Let X = A2 and Y = A2 \ V(x). Then, 1
x ,
y
x ∈ OV (U) = C[x,y, 1x ]. △

Note that the restriction C[V ] → OV (U) is injective if U is dense in V ; in particular, if V is irreducible
and U is non-empty.

Theorem 8.6. The inclusion C[V ] ↪→ OV (V ) is surjective and is hence an isomorphism.

This is non-obvious, saying that every locally rational function is in fact globally polynomial.

Theorem 8.7. Let W = V \ V(h) be a basic affine open set, and let U ⊆ W be open, not necessarily
affine. Then,

OV (U) = OW (U)

We now generalise OV (U) from affine V to quasiprojective V . Given a quasiprojective variety V and an
open subset U ⊆ V ,

OV (U) =
{
F : U → C : ∀p ∈ U,open neighbourhood W ⊆ U of p such that F |W ∈ C[W ]

}
Again, this is naturally a C-algebra.

The definition of a morphism of quasiprojective varieties can also be rephrased locally using regular
functions.

Let X ⊆ Pn and Y ⊆ Pm be quasiprojective varieties. A map of sets F : X → Y is a morphism of
quasiprojective varieties if for each p ∈ V , there exist open affine neighbourhoods U of p and V of f(p)
such that f(U) ⊆ V and f |U agrees with a map of affine varieties. That is, f |U is given by a set of
regular functions in the coordinates of U .
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9 The Veronese Embedding

The Veronese embedding is an important example of a morphism of quasiprojective varieties. The
Veronese embedding embeds Pn as a subvariety of a higher dimensional projective space in a non-trivial
way.

Consider the set of all homogeneous polynomials of fixed degree d in the polynomial ring C[x0, . . . ,xn].
This is a finite-dimensional C-vector space, with standard basis given by the monomials of the form

d∏
i=1

xdii

where
∑d
i=1 di = d. We define the set of exponent vectors

Md,n :=

{
I = (d0, . . . ,dn) ∈ Nn+1 :

n∑
i=1

di = d

}
∼= {degree d monomials in x0, . . . ,xn}

with the obvious bijection sending each vector I = (d0, . . . ,dn) to the monomial xd00 · · ·xdnn . We abbreviate
thes monomial to xI .

Example. If n = 2 and d = 6, then the vector I = (0,2,4) corresponds to the monomial x00x21x43. △

These vectors (and hence monomials, by transport along the bijection) are naturally ordered under the
lexicographic ordering, where I = (i0, . . . ,in) precedes J = (j0, . . . ,jn) if there exists k ∈ N such that
ik < jk, and iℓ = jℓ for all ℓ < k. That is, the first disagreement between I and J in the kth

Example. xI := x20x1x
3
2x4 precedes xJ := x20x1x

2
2,x

2
3 since

I = (2,1,3,0,1) > (2,1,2,2,0) = J

△

Theorem 9.1. There are
(
n+d
d

)
-many degree d monomials in n+ 1 variables x0, . . . ,xn.

Proof. Stars and bars. Every monomial can be represented by a string of x1-many stars, a separating
bar, x2-many stars, etc. of d stars and n separating bars, and there are

(
n+d
d

)
ways to place the d stars

amongst the d+ n total spaces. ■

The dth Veronese embedding of Pn is the map νd,n defined by the tuple of all monomials of degree d:

νd,n : Pn → P|Md,n|−1 = P(
n+d
d )−1

[x0 : · · · : xn] 7→ [xd0 : xd−10 x1 : · · · : xdn︸ ︷︷ ︸
all monomials of degree d

]

This is well-defined, since the polynomials all have the same degree, and cannot simultaneously vanish
for any [x0 : · · · : xn] ∈ Pn, since if xi ̸= 0, then xdi ̸= 0.

Example. The 2nd Veronesi embedding in dimension 1 is given by

ν2,1 : P1
[s:t] → P2

[x:y:z]

[s : t] 7→ [s2 : st : t2]

and is an isomorphism on to its image V(xz − y2).

The 3rd Veronesi embedding in dimension 1 is given by

ν3,1 : P1
[s:t] → P2

[x:y:z:w]
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[s : t] 7→ [s3 : s2t : st2 : t3]

△

In general, we may index the coordinates of P|Md,n|−1 by I ∈Md,n.

Example. The 2nd Veronesi embedding in dimension 2 is given by

ν2,2 : P2
[x0:x1:x2]

→ P5
[z(2,0,0):···:z(0,0,2)]

[x0 : x1 : x2] 7→ [ x20︸︷︷︸
z(2,0,0)

: x0x1︸︷︷︸
z(1,1,0)

: x0x2︸︷︷︸
z(1,0,1)

: x21︸︷︷︸
z(0,2,0)

: x1x2︸︷︷︸
z(0,1,1)

: x22︸︷︷︸
z(0,0,2)

]

△

Theorem 9.2. For all d,n, the Veronesi embedding νd,n is an isomorphism from Pn onto a closed
subvariety of P|Md,n|−1.

Proof. We describe the inverse map.

Let W ⊆ P(
n+d
d )−1 be the image of νd,n. At each point of W , at least one of the coordinates indexed by

the single-variable monomials xdi must be non-zero. So,

νd,n(Ui) ⊆ U(0,..., 1︸︷︷︸
ith position

,...,0) ⊆ P(
n+d
d )−1

for each i, where Ui is the subset of Pn where xi is non-zero.

Also, for each i,

[x0x
d−1
i : x1x

d−1
i : · · · : xdi : · · · : xd−1i xn−1 : xd−1i xn] = [x0 : · · · : xn]

so we can define a inverse on each affine chart by:

U(0,..., 1︸︷︷︸
ith position

,...,0) → Pn

[z(d,0,...,0) : · · · : z(0,...,0,d)] 7→

■
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